Un conductor es un material que, en mayor o menor medida, conduce el calor y la electricidad. Son buenos conductores los metales y malos, el vidrio, la madera, la lana y el aire.

 

NOTA: Definimos la unidad de carga +1 como +1,6·10-19 culombios. Así un electrón tiene una carga -1 equivalente a -1,6·10-19 culombios.

 

El conductor más utilizado y el que ahora analizaremos es el Cobre (valencia 1), que es un buen conductor. Su estructura atómica la vemos en la siguiente figura.

 

 

Su número atómico es 29. Esto significa que en el núcleo hay 29 protones (cargas positivas) y girando alrededor de él hay 29 electrones girando en diferentes órbitas.

 

En cada órbita caben 2n2 siendo n un número entero n = 1, 2, 3, ... Así en la primera órbita (n = 1) caben 212 = 2 electrones. En la segunda órbita 2·22 = 8 electrones. En la tercera órbita 2·32 = 18 electrones. Y la cuarta órbita solo tiene 1 electrón aunque en ella caben 2·42 = 32 electrones.

 

Lo que  interesa en electrónica es la órbita exterior, que es la que determina las propiedades del átomo. Como hay + 29 y - 28, queda con + 1.

 

Por ello vamos a agrupar el núcleo y las órbitas internas, y le llamaremos parte interna. En el átomo de cobre la parte interna es el núcleo (+ 29) y las tres primeras órbitas (- 28), con lo que nos queda la parte interna con una carga neta de +1.

 

 

Como el electrón de valencia es atraído muy débilmente por la parte interna, una fuerza externa puede liberarlo fácilmente, por eso es un buen Conductor. Nos referiremos a ese electrón de valencia, como electrón libre.

 

Lo que define a un buen conductor es el hecho de tener un solo electrón en la órbita de valencia (valencia 1).

 

Así, tenemos que:

 

  • A 0 ºK (-273 ºC) un metal no conduce.
  • A Temperatura ambiente 300 ºK ya hay electrones libres debidos a la energía térmica.

 

- Si tenemos un campo eléctrico aplicado los electrones libres se mueven en todas direcciones. Como el movimiento es al azar, es posible que muchos electrones pasen por unidad de área en una determinada dirección y a la vez en la dirección opuesta. Por lo tanto la corriente media es cero.

 

 

- Veamos ahora como cambia la situación, si se aplica al metal un campo eléctrico.

 

 

Los electrones libres se mueven ahora en una dirección concreta. Y por lo tanto ya hay carga (en culombios) que cruza la sección del metal en un segundo, o sea ya existe una corriente.

 

Como ya conocemos, el electrón tiene una carga negativa (-1,619-19 culombios) y por tanto el convenio tomado para definir la corriente (contrario al movimiento de las cargas negativas) nos indica que la corriente toma el sentido indicado en la figura.

 

El electrón se mueve dentro de la red cristalina del metal con una velocidad media

 

 

Son los semiconductores que están dopados, esto es que tienen impurezas. Hay 2 tipos dependiendo de que tipo de impurezas tengan:

 

Semiconductor tipo n

 

Es el que está impurificado con impurezas "Donadoras", que son impurezas pentavalentes. Como los electrones superan a los huecos en un semiconductor tipo n, reciben el nombre de "portadores mayoritarios", mientras que a los huecos se les denomina "portadores minoritarios".

 

Al aplicar una tensión al semiconductor de la figura, los electrones libres dentro del semiconductor se mueven hacia la izquierda y los huecos lo hacen hacia la derecha. Cuando un hueco llega al extremo derecho del cristal, uno de los electrones del circuito externo entra al semiconductor y se recombina con el hueco.

 

 

Los electrones libres de la figura circulan hacia el extremo izquierdo del cristal, donde entran al conductor y fluyen hacia el positivo de la batería.

 

Semiconductor tipo p

 

Es el que está impurificado con impurezas "Aceptoras", que son impurezas trivalentes. Como el número de huecos supera el número de electrones libres, los huecos son los portadores mayoritarios y los electrones libres son los minoritarios.

 

Al aplicarse una tensión, los electrones libres se mueven hacia la izquierda y los huecos lo hacen hacia la derecha. En la figura, los huecos que llegan al extremo derecho del cristal se recombinan con los electrones libres del circuito externo.

 

 

En el circuito hay también un flujo de portadores minoritarios. Los electrones libres dentro del semiconductor circulan de derecha a izquierda. Como hay muy pocos portadores minoritarios, su efecto es casi despreciable en este circuito.

 

 

La resistencia como dispositivo lineal

 

Antes de ver el diodo vamos a ver las características de la resistencia.

 

La resistencia de carbón típica está formada por polvo de carbón machacado. Son importantes las dimensiones del carbón.

 

 

Para analizar el comportamiento de esa resistencia la polarizaremos primero en directa y luego en inversa. Se toman los valores con un Amperímetro y un Voltímetro y se representa la I en función de V, con lo que tendremos el comportamiento de la resistencia.

 

 

Si polarizo al revés las ecuaciones son las mismas, pero las corrientes y las tensiones son negativas.

 

 

Entonces al final nos quedará de la siguiente forma:

 

 

A esta representación se le llama "Curva Característica" y es una recta, por ello se dice que la resistencia es un "Elemento Lineal". Es más fácil trabajar con los elementos lineales porque sus ecuaciones son muy simples.